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The shear-free turbulent boundary layer is calculated by the large-eddy simulation 
technique. The filtered NavierStokes equations are used; the method of integration 
employs Fourier expansions in the homogeneous directions and finite differences 
in the cross-stream direction. Results indicate that the simulation is capable of 
predicting the primary Reynolds-number effects. 

1. Introduction 
The objective of this paper is to  investigate the ability of the large-eddy simulation 

(LES) technique to predict the principal characteristics of the shear-free turbulent 
boundary layer. This flow is of considerable interest, because one can study the 
inhibiting effects of the wall on an initially isotropic turbulent flow field independent 
of the effects of mean strain. 

Previous work on this flow involves experiments performed by Uzkan & Reynolds 
(1967) in a water tunnel and, more recently, by Thomas & Hancock (1977) in a wind 
tunnel. Both experiments involve decaying grid turbulence passed over a wall moving 
at the same speed aa the mean flow. Moreover, the problem has been dealt with 
theoretically by Hunt & Graham (1978). 

In their experiments, conducted at a low Reynolds number (Re), Uzkan & Reynolds 
found that the turbulent fluctuations tangential to the surface (ul) were reduced in 
amplitude by the presence of the wall. Their low-Reynolds-number analysis showed 
that the thickness of the inhomogeneity layer affected by the wall would grow as 
(ut)* (corresponding to growth proportional to [ux1/(U,),]~ in the experiments); Ul is 
the mean velocity in the tangential (streamwise) x1 direction, u is the kinematic 
viscosity, and subscript e refers to external flow conditions. In contrast, Tho as and 
Hancock’s experiments, conducted at high Reynolds number, revealed J g e n t i a l  
fluctuations near the surface of greater amplitude than in the free stream. 

Hunt & Graham’s theoretical work provides the explanation of these differences. 
They used a two-layer asymptotic analysis to predict the length scales, variances, 
and the one-dimensional power spectra of the fluctuating velocities. They assumed 
weak turbulence in the outer flow, ( u ~ ) ~  + (&)l and Re = (q)iLe/u % 1, where u1 is 
the fluctuating velocity in the z1 direction and L is the integral length scale. With 
these assumptions, they employed boundary-layer approximations and modelled the 
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flow in terms of an inner (viscous) layer scaling on [vzl/( t4)1]4 and an outer (source) 
layer scaling on L,. The thickness of the (rotational) viscous layer was defined in 
terms of the normal component of the fluctuating vorticity, (u”)~ .  The vorticity of the 
source region was assumed to equal the vorticity of the external flow; hence (us)( = 0 
for all i. The solution for the linearized equations of the inner region gives 
8, = 4-O[vz1/(U,),]4 for the thickness of the viscous layer. The outer-region solution 
was obtained by using a rapid distortion analysis. 

Hunt & Graham compared their solutions with the data of Thomas & Hancock a t  
(Re), = (U,)lM/~ - lo5, where M is the grid spacing. Their predictions are in good 
overall agreement with experimental results, but fail to predict the Reynolds-number 
dependence of the u1 amplification, and they overpredict the u3 amplification in the 
source layer close to the wall. In addition, their theory is applicable only to large- 
Reynolds-number flows in which 8,/L, < 1 and cannot predict the near-wall decay of 
u, in the low-Reynolds-number experiment (Re, - lo3) of Uzkan & Reynolds. In  
this experiment 8, - a,, where 8, is the thickness of the source layer, so that the large- 
Reynolds-number assumption of their theory is not valid. 

In  order to explain the streamwise dependence of the u1 fluctuations observed in 
their experiment but not predicted by Hunt & Graham, Thomas & Hancock used a 
Reynolds-number-dependent dynamical model equation in which they incorporated 
Uzkan & Reynolds’ results. Their predictions are in good agreement with their 
measurements, especially with respect to the increase in u1 with streamwise distance 
and, hence, with increasing Reynolds number. 

Because of the striking differences between the high- and low-Reynolds-number 
behaviour in this flow, it forms an excellent test base for turbulence modelling. Our 
objective here is to see if a new approach, large-eddy simulation (LES), is capable of 
predicting the observed effects over a wide Reynolds-number range. In  2 we explain 
the LES procedure, in § 3 we present and discuss the results, and in 9 4 we make some 
concluding remarks. 

2. The calculation procedure 
In  large-eddy simulation of turbulent flows, each flow variable is decomposed into 

a large-scale component and a residual-field component. This can be obtained by 
filtering the flow variables (Leonard 1974) such that 

and 
t )  = q x ,  t )  +Ui(X, t )  

G(x-x’)u~(x’, t )  d ~ ‘ .  

In  these expressions u; is the residual-field component, Ti* is the large-scale (filtered) 
component, and G ( x - x ‘ )  is the filter function. In previous simulations of homo- 
geneous turbulence, we have used a Gaussian filter, 

41 3 
G(X-x’)  = [ (:) exp [ -y(x-x‘)2/62], (3) 

where y is a constant and A is the filter width. Kwak, Reynolds & Ferziger (1975) used 
y = 6 and showed that by taking A as twice the computational mesh size, h, the best 
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results are obtained; calculations performed with the turbulent model constant that 
gives the proper energy decay, accurately predicted the filtered spectrum only when 
A was set equal to 2h. 

Application of filtering to the incompressible Navier-Stokes equations yields 

where rif represents the residual (subgrid scale - SGS) stresses and reads 

7 i f =  R i j -  iRkks$j, 

and P* is 

In  these equations 1, is the filtered pressure and p is the density. 
It can be shown (Mansour et al. 1977) that the form of the convective terms in (4) 

will ensure conservation of momentum and energy in the absence of viscous terms for 
a broad range of finite-difference schemes including the scheme used in this work. 
This prevents the occurrence of nonlinear instability in the numerical solution 
procedure. 

The closure will be obtained once the residual-stress field is defined in terms of the 
large-scale field. To this end we use the Smagorinsky (1963) model which has been 
successfully applied by Kwak et al. (1976), Mansour et al. (1977), and Ferziger, Mehta 
& Reynolds (1977) to the large-eddy simulation of homogeneous, isotropic turbulence 
and more recently to free shear flows by Mansour, Ferziger & Reynolds (1978) and 
the plane channel flow by Moin, Reynolds & Ferziger ( 1 9 7 8 ~ ) .  Application of the 
LES to the calculation of homogeneous, isotropic turbulence (Kwak et al. 1975) with 
the use of the Smagorinsky model along with the proper model constant enabled the 
correct prediction of the rate of decay of filtered energy and the correct form of the 
energy spectrum. Use of the same model in the LES simulation of the plane channel 
flow (Moin et al. 1978a) resulted in successful predictions of the time-averaged mean- 
velocity profile as well as distributions of the resolvable Reynolds-stress components. 
The Smagorinsky model is - 

7i.j = - 2VTs$j, 

VT = (C8A)'(28ijSij)*. (6b) 

It should be noted that this model is essentially an eddy-viscosity model where the 
characteristic length is expressed in terms of the grid length. In (6a) and (6b) Sij 
denotes the strain-rate tensor of the large-scale field, 

Also, C, is a constant whose value can be estimated from spectral considerations 
(Lilly 1967) or evaluated by direct numerical experiment (Kwak et al. 1975; Clark, 
Ferziger & Reynolds 1977). In these numerical experiments, calculations were run 
with different values of the model constant and the value that predicted the rate of 
decay of the filtered energy most closely was selected. In  view of these LES 
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calculations of the decay of isotropic, homogeneous turbulence, in this work we have 
used C, = 0.2. 

Together with the Poisson equation for the pressure, 

V2P* = - [ - u  a (---)+-(2vTR*j)], aui atif a 
ax6 f axj axt axj (7) 

equations (4)-(7) can be numerically integrated once an initial velocity field and 
appropriate boundary conditions are prescribed. 

In  this work we employed a numerical integration code developed by Moin el al. 
(1978a) for the LES of plane channel flow. We calculated the flow field between 
two boundaries at x2 = 0 and at x2 = D, where D is the flow region. The boundary 
conditions will be described shortly. 

The method of integration invokes flow homogeneity in the streamwise-xl and the 
lateral-x3 directions by imposing periodic boundary conditions to expand the flow 
variables in terms of finite Fourier series, e.g. Tii can be written as 

El(% 22, x3) = x &(k1, 22, k3) e q  [i(klXl+ k3X3)], 
ni %a 

n, = -44 ,..., 0, 1, ..., 44-1, (8) 
and the Fourier transform of Z1 is given by 

1 
Sl(k1, 52, k3) = " xX~l(x1, 52, X3)exp[-~(~,x1+~3~3)ly m, = 0, 1 , . . . , 4 - 1 .  (9) 

1 3minZa 

In  expressions (8) and (9), k, = "$h5, hi is the grid spacing in the x5 direction, 
whereas Nj is the number of mesh points in the xf direction. The derivatives in xl and 
x3 directions that appear in (4) are evaluated by the pseudospectral method (Fox & 
Orszag 1973) in which expansions (8) and (9) are used in conjunction with the fast- 
Fourier-transform algorithm of Singleton (1967). The derivatives in the inhomo- 
geneous x2 direction are evaluated by second-order central differences. 

In this calculation the field variables can be filtered explicitly in the homogeneous 
directions (xl and x3), and we modified (3) accordingly. Hence, for equal filter width, 
A, in the x1 and x3 directions, 

The finite differencing in the x2 direction provides the filtering in this direction 
implicitly. 

The second-order Adams-Bashforth method is used for explicit time advancement; 
;iit at time step n + 1 is expressed as 

The Poisson equation (7) solution selects a pressure that will ensure that Z?+l will be 
divergence-free. The Poisson equation is numerically integrated by a semi-direct 
method which employs Fourier transforms in the x1 and x3 directions and finite 
differences in the x2 direction. This gives a pentadiagonal matrix in the x2 direction 
owing to the five-point difference approximation. The calculation was carried out 
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for the time-evolving problem, which was then compared with the spatially evolving 
experiment by replacing t by x,/( G),. 

A random isotropic initial field was generated using the technique developed by 
Kwak et al., outlined here. In wavenumber space, the definitions of the correlation 
tensor and its Fourier transform lead to 

where E ( k )  is the three-dimensional filtered spectrum, k is the shell-averaged wave- 
number, a = cos 8, b = sin 8, and 6 is a random angle, whereas D is the length of the 
computational box. Aj and Bj are unit vectors chosen randomly but are such that 
continuity is satisfied. Further, to make the velocity field real, Gj( - k) waa set equal 
to G;(k), whey * denotes complex conjugate. Then 5ij(x) was obtained by inverse 
transforming E,(k). This procedure requires the prescription of an initial three- 
dimensional energy spectrum. In  the present computations, this was obtained from 
the measured one-dimensional spectra of u, at a reference 2,-station taken as corres- 
ponding to time to. The three-dimensional spectrum, E ( k ) ,  was obtained from the 
measured one-dimensional spectrum, F,,(k,) from (Tennekes & Lumley 1972, p. 253) 

It should be noted that this relationship holds for three-dimensional isotropy. 
In  all the calculations reported here we used a 16 x 18 x 16 mesh to limit the com- 

putation time. We generated the initial field for a 16 x 16 x 16 mesh system and placed 
this field inside our computational box. One extra point was then added at each x2 
boundary and values were imposed there to satisfy the required boundary conditions. 
After one time step, the flow field becomes divergence-free at all mesh points because 
of the solution process. 

For the low Reynolds number of the Uzkan & Reynolds experiment, we imposed 
no-slip conditions at the lower wall (x2 = 0 )  and no-stress conditions at the upper 
boundary (x, = D) to simulate flow conditions a t  a surface sufficiently far away from 
the solid wall: 

( 1 W  
- 
ui = 0,  at . x2 = 0;  

- u, = ax, = & %s = 0, at x 2 =  D. 

In  the high-Reynolds-number experiments of Thomas & Hancock, S , 4  S,, and hence 
all their measurements were taken outside the viscous layer. Since our computational 
mesh was not fine enough to resolve the viscous layer, we prescribed no-stress con- 
ditions at x2 = 0 as well for the high-Reynolds-number simulation. It should be 
noted that in the source layer = 0 and by continuity u, = 0 at  the inner edge 
of the source layer, i.e. as x,/L+O (Hunt & Graham 1978). Hence, the no-stress 
conditions are the physically correct conditions to be imposed at the inner boundary 
for the high-Reynolds-number case. Periodic boundary conditions were used in the 
z1 and x3 directions. 
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F I U ~  1. Variations of u1 variances; - -- , measurements by Uzkm & Reynolds (1967); 
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FIUURE 2. Variations of u1 variances; 0, A, 0.0, measurements by U z h n  & Reynolds (1967) 
at z,/M = 7-6, zl/M = 11.5, z,/M = 12.6 and zl/M = 16 respectively; ---, average line 
through measurements; -, present computations. 
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FIQURE 3. Variations of LUl; - - - , measurements by Uzkan & Reynolds (1967); 
-, present computations. 

3. Results and discussion 
All the computations were performed on a CDC-7600 at NASA-Ames Research 

Center. We used C, = 0.2, as in our earlier homogeneous-flow calculations. We define 
the characteristic Reynolds number in terms of the integral length scale, (LJe and 
the r.m.8. value of (us),. This gives Re 2: 40 for the Uzkan t Reynolds experiment and 
Re 2: 2000 for the Thomas & Hancock experiment at x,/M = 22. We also define the 
physical thickness of the viscous and source layers, 8, and 8,. respectively, to be the 
x, co-ordinate at which the variances of 5, (in the case of 8,) and U, (in the case of 
8,) reach 75 % of their free-stream values. 

3.1. Low-Reynolds-number m e  

For the Uzkan & Reynolds experiment we chose the size of our computational box by 
assigning the grid spacing A = 0.15 cm in all three directions. This resolves the 
energy spectrum for wavenumbers 2.6 < k, < 21 cm-l and, considering the measured 
spectra for this flow, is adequate to capture most of the turbulence energy. The initial 
velocity field was generated from the measured one-dimensional energy spectrum of 
u1 a t  the station x1 = 16 inches (or x, /M = 7-5). For time advancement, we used 
AT = 0.003, where T is time non-dimensionalized by the reference length and velocity 
scales of the  flow. This choice of the time step gives a Courant number which is well 
within the limits of stability requirements. 

In  order to obtain a smoothly varying field, the initial turbulent field had to be 
allowed to develop for about 200 time steps. It was then rescaled to the proper energy 
to match the experiment, and the calculation was continued for about 300 additional 
time steps. The corresponding times in the experiments were estimated using the 
Taylor hypothesis, and the experimental convection velocity was taken as (q),. 

Results for the variances of the resolvable scale u,-fluctuations are presented in 
figures 1 and 2, where we define the variance, e.g. (q), aa a planar average in the 
x,, xQ plane. In figure 1 we use 8, and ((a:),) at t = to (or at x,/N = 7.5) as the scaling 
parameters. The computational curves display the same qualitative behaviour as the 
measured profiles, but the agreement between the two worsens with downstream 
distance because our computation does not produce the observed rate of growth of 

3 FLY 103 
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the layer. We believe this failure is due to the close proximity of the upper boundary 
in the simulation. 
As indicated by the dashed-dot lines (extensions of the computations), the rate of 

decay of free-stream turbulence energy is quite accurately predicted by the calcula- 
tions. 

In  figure 2 we show the u1 variances using the local values of 8, and ( (Ti:) , )  as the 
scaling parameters. The computational curves follow the self-similar trend displayed 
by the measurements and confirm the error-function distributions of Uzkan & 
Reynolds. 

Near the wall, the quantitative discrepancy between the shape of the computed 
curve in figure 2 and the measurements is likely to be due to excess extraction of 
energy by the SGS model; as yet we have not repeated the calculations with the 
modified wall-region SGS model of Moin et al. (1978a, b) .  
In figure 3 we plot the variation of the integral length scale, Lul, across the flow 

field. The integral length scale is defined as 

U 
= 7 .Fll(kl)k+O' 

4% 
We compute F,,(k,) from 

(17) 

A 

(18) 

According to our mesh system, n, = 1,. . ., N, and N, = 16. Hence one can calculate 

1 5  
= - I; Ul(kl ,  x,, x 3 ) E 7 ( k 1 ,  xZ, %)' 
Nl 121 

by extrapolating Fll(kl) to zero frequency. 
The computed curve (figure 3) displays good qualitative agreement with the mea- 

sured distribution. The computed length scale increases slightly and then decreases 
towards the wall. The experiment does not show the increase, but otherwise the 
agreement is quite satisfactory. 

3.2. High- Reynolds-number m e  

In  order to simulate the Thomas & Hancock experiment, we generated the initial 
field from the measured spectrum of u1 at x, /M = 22. The measurements a t  x l / M  = 25 
are the target of our computations. We found it necessary to modify the initial 
conditions so as to produce a smooth field satisfying the boundary conditions at 
x, = 0. This was accomplished by multiplying the initial u, field by exp ( -xi). Again, 
after one time step the flow field becomes divergence-free. 

In  these computations we used T = 0.001 for numerical stability and chose 
h = 1-5 cm. This yields 0.26 < k, < 2-1 cm-l and captures most of the turbulence 
energy. The number of time steps necessary to cover the distance of 25 cm between 
the two experimental stations is about 350. In  this high-Reynolds-number case, our 
computations displayed an irregular behaviour of the ul, u, and u, variances over a 
considerable portion of the computational domain, even when the computations were 
carried to about 800 time steps. We attribute this to the persistence of the randomness 
of the initial field owing to insufficient statistical sa,mpling. To increase the statistical 
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FIGURE 6. Variations of u2 variances; symbols aa in f i w e  4. 

sampling, we created six different random fields as our initial conditions andensemble- 
averaged the resulting variances. The averaged results are considerably smoother, 
and we conclude that the degree of smoothness of the distributions will increase with 
the number of samples. 

In figures 4,5  and 6 we compare the results of our computations with the Thomas 
& Hancock experiment at  xl/M = 25 and the predictions of Hunt & Graham. In these 
figures we use the local values of 8, and ( (U; )J  as the scaling parameters and take the 
edge of the flow to coincide with the half-thickness of the computational domain; all 
distributions are relatively flat at this point. It should be noted that, in the case of 
u1 variances, the experiments of Thomas & Hancock show a marked deviation from 
self-similarity and that the amplification of u1 fluctuations as well as the thickness of 
the source layer increases with downstream distance. Our computations also show 
some deviation from self-similarity, and the measurements are closely predicted over 
a considerable portion of the flow field. Near the wall, the computed values of u1 
variances are less than the experimental values, but much of the observed increases 
in amplitude is predicted. 

Figure 5 shows a plot of the u3 variances; note that the computed values are sig- 
nificantly higher than the measurements, especially close to the wall. Our calculations 
simulate grid-generated isotropic turbulence starting from isotropic initial conditions 
and assuming homogeneity in z1 and x3. Hence in the source region it should be 
expected that (a:) = (G:), and our calculations closely predict this. The discrepancy 
between the measurements and our results are likely due to the existence of a preferred 
direction, zl, in the measurements, which is not simulated in our calculations. 

Finally, in figure 6 we present a plot of the u2 variances (normal fluctuations). 
Except for the irregular behaviour around the centre of the flow field, which can be 
attributed to insufficient statistical sampling, the predictions compare favourably 
with experiment. Also, the computed results display a more abrupt increase than that 
indicated by the measurements. 
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4. summary 
We now summarize the main conclusions of this work. 
(1) Large-eddy simulation of the shear-free turbulent boundary layer has predicted 

the primary Reynolds-number effects on the behaviour of the tangential turbulence 
variances near the wall - damping at low Reynolds number and amplification a t  
high Reynolds number. 

(2) Comparisons with the low-Reynolds-number experiments suggest that the 
SGS model should be modified to provide less energy extraction near the wall. 

This work was supported in part by the NASA/Ames Research Center. The senior 
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